												REVIS	SIONS	;							
				L	TR				DESC	RIPTI	ON				D	ATE		Å	APPRO	OVED	
Danagara																					
Prepared	l in acc	cordanc	ce with	n ASME Y	14.24		1	1	1	1	1	1	1	1	1	1	Ve	ndor it	em dra	awing	1
REV	l in acc	cordand	ce with		14.24												Ve	ndor it	em dra	awing	
	l in acc	cordan	ce with	n ASME Y	14.24												Ve	ndor it	em dra	awing	
REV PAGE	l in acc	cordand	ce with	n ASME Y	14.24												Ve	ndor it	em dra	awing	
REV PAGE REV		cordan	ce with	n ASME Y	14.24												Ve	ndor it	em dra	awing	
REV PAGE REV PAGE		cordand			14.24	2	3	4	5	6	7	8	9	10	11	12	Ve	ndor it	em dra	awing	17
REV PAGE REV PAGE REV STA	ATUS	cordano	REV	E	1 2ED BY	,	3	4	5	6	7	8	D	LA L		AND	13 MAI	14 RITIN	15 NE	16	
REV PAGE REV PAGE REV STA OF PAGE	ATUS	cordanc	REV	E	1 2ED BY	,	3	4	5	6	7		D COI	LA L LUME	AND BUS,		13 0 MAI 0 43	14 RITIN 218-3	15 NE 3990	16	
REV PAGE REV PAGE REV STA OF PAGE	ATUS		REV	E PREPAR RICK O	1 FFICEI	,	3	4	5	6		h	D COI	LA L LUME	AND BUS,		13 0 MAI 0 43	14 RITIN 218-3	15 NE	16	
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS	drawir	REV	E	1 ED BY	R	3	4	5	6	тіт	ht LE	D COI ttp://	LA L LUME www	AND 3US, .land	AND OHIC landr	13 0 MAI 0 43 marit	14 RITIN 218-3 ime.o	15 15 15 3990 dla.m	16	17
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	drawir	REV	E PREPAR RICK O CHECKE RAJESI APPROV	1 ED BY FFICEI	R ADIA	I	4	5	6	TIT MIC PO		D COI ttp://	LAL LUME www	AND BUS, Iand	AND OHIO landr	13 D MAI D 43 marit	14 RITIN 218-3 ime.o	15 1E 3990 dla.m	16	17 OW
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawir	REV	E PREPAR RICK O CHECKE RAJESH APPROV CHARL	1 ED BY FFICEI PITH ES F. S	ADIA SAFFL	E		5	6	TIT MIC PO MO	ht LE CROC WER	D COI ttp:// ttp:// CIRCI	LAL LUME www	AND BUS, Iand	AND OHIO landr	13 D MAI D 43 marit	14 RITIN 218-3 ime.o	15 1E 3990 dla.m	16 16	17 OW
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawir	REV	E PREPAR RICK O CHECKE RAJESI APPROV CHARL SIZE	1 ED BY FFICEI PITH ES F. S	ADIA SAFFL	E ENT. N	0.	5	6	TIT MIC PO MO		D COI ttp:// ttp:// CIRCI	LAL LUMI WWW	AND BUS, Iand LINE, JT O	AND OHIO landr AR, S PER/	13 D MAI D 43 marit	14 RITIN 218-3 ime.o	15 1E 3990 dla.m	16 16	17 OW
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawir	REV	E PREPAR RICK O CHECKE RAJESH APPROV CHARL	1 ED BY FFICEI PITH ES F. S	ADIA SAFFL	E ENT. N		5	6	TIT MIC PO MO	ht LE CROC WER	D COI ttp:// ttp:// CIRCI	LAL LUMI WWW	AND BUS, Iand LINE, JT O	AND OHIO landr AR, S PER/	13 D MAI D 43 marit	14 RITIN 218-3 ime.o	15 1E 3990 dla.m	16 16	17 OW

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance single supply, low power field effect transistor (FET) input operational microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/12636</u> - Drawing number	01 Device type (See 1.2.1)	XECase outlineLead finish(See 1.2.2)(See 1.2.3)	
1.2.1 <u>Device type(s)</u> .			
Device type	<u>Generic</u>	Circuit function	
01	AD822	Single supply, low power FET input operation amplifier	al

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	8	MS-012-AA	Plastic small outline

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	<u>Material</u>
A B C D E Z	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _S)	. ±18 V
Input voltage (V _{IN})	. +V _S + 0.2 V to $-V_S - 20$ V
Output short duration	. Indefinite
Differential input voltage	. ±30 V
Internal power dissipation (P _D)	
Maximum junction temperature (TJ)	. 150°C
Storage temperature range (T _{STG})	
Lead temperature (soldering, 60 seconds)	. +260°C
1.4 <u>Recommended operating conditions</u> . <u>2</u> /	
Supply voltage range (V _S)	. ±15 V
Operating temperature range (T _A)	55°C to +125°C
1.5 <u>Thermal characteristics</u> .	
Thermal resistance, junction to case (θ_{JC})	
Thermal resistance, junction to ambient (θ_{JA})	. 160°C/W

^{2/} Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 3

<u>1</u>/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. APPLICABLE DOCUMENTS

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Applications for copies should be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834 or online at http://www.jedec.org)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.

3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 4

Test	Symbol	Conditions $V_S = 0 V, 5 V,$	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0.2 V,$ unless otherwise specified			Min	Max	
DC performance.		•	·				
Initial offset voltage	VIO		+25°C	01		0.8	mV
			-55°C to +125°C			1.2	
Initial offset voltage drift	ΔVIO		-55°C to +125°C	01	2 ty	pical	μV/ °C
Input bias current	I _{IB}	$V_{CM} = 0 V \text{ to } 4 V$	+25°C	01		25	pА
			-55°C to +125°C			6	nA
Input offset current	IIO		+25°C	01		20	pА
			-55°C to +125°C	-	0.5 t	ypical	nA
Open loop gain	AO	V_{OUT} = 0.2 V to 4 V, R _L = 100 k Ω	+25°C	01	500		V/mV
			-55°C to +125°C		400		
		V_{OUT} = 0.2 V to 4 V, R _L = 10 k Ω	+25°C		80		
			-55°C to +125°C		80		
		V_{OUT} = 0.2 V to 4 V, R _L = 1 k Ω	+25°C		15		
			-55°C to +125°C		10		
Noise/harmonic perform	nance.						
Input voltage noise	NV	f = 0.1 Hz to 10 Hz	+25°C	01	2 ty	pical	μVpp
		f = 10 Hz	1		25 typical 21 typical 16 typical 13 typical		nV /
		f = 100 Hz					√Hz
		f = 1 kHz					
		f = 10 kHz					
Input current noise	NI	f = 0.1 Hz to 10 Hz	+25°C	01	18 t <u>y</u>	ypical	fApp
		f = 1 kHz			0.8 t	ypical	fA / √Hz
Harmonic distortion		V _{OUT} = 0.25 V to 4.75 V,	+25°C	01	-93 t	ypical	dB
		f = 10 kHz, R _L = 10 k Ω to 2.5 V					

TABLE I. Electrical performance characteristics. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 5

Test	Symbol	Conditions V _S = 0 V, 5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0.2 V$ unless otherwise specified			Min	Max	
Dynamic performance.		·	·				
Unity gain frequency			+25°C	01	1.8 t	ypical	MHz
Full power response		V _{OUT} pp = 4.5 V	+25°C	01	210 1	ypical	kHz
Slew rate	SR		+25°C	01	3 ty	pical	V/µs
Settling time	ts	To 0.1%, V _{OUT} = 0.2 V to 4.5 V	+25°C	01	1.4 t	ypical	μS
		To 0.01%, V _{OUT} = 0.2 V to 4.5 V			1.8 t	ypical	
Matching characteristics		1					1
Initial offset voltage	VIO		+25°C	01		1.0	mV
			-55°C to +125°C			1.6	
Initial offset voltage drift	ΔVIO		+25°C	01	3 ty	pical	μV/ °C
Input bias current	I _{IB}		+25°C	01		20	pА
Crosstalk	СТ	At f = 1 kHz, $R_L = 5 k\Omega$	+25°C	01	-130	typical	dB
		At f = 100 kHz, $R_L = 5 k\Omega$			-93 t	ypical	
Input characteristics.							
Input voltage range 2/			-55°C to +125°C	01	-0.2	+4	V
Common mode	CMRR	$V_{CM} = 0 V \text{ to } 2 V$	+25°C	01	66		dB
rejection ratio			-55°C to +125°C		66		
Differential input impedance	Z		+25°C	01	10 ¹³ 0	.5 typical	Ω pF
Common mode input impedance	Z		+25°C	01	10 ¹³ 2	.8 typical	Ω pF

TABLE I.	Electrical	performance characteristics - Continued. 1/	
	1000110041		

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 6

Test	Symbol	Conditions V _S = 0 V, 5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0.2 V$ unless otherwise specified	'A	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Max	
Output characteristics.							
Output saturation <u>3</u> / voltage		$V_{OL} - V_{EE}$, $I_{SINK} = 20 \ \mu A$	+25°C	01		7	mV
vonage			-55°C to +125°C			10	
		V _{CC} – V _{OH} , I _{SOURCE} = 20 μA	+25°C			14	
			-55°C to +125°C			20	
		V _{OL} – V _{EE} , I _{SINK} = 2 mA	+25°C			55	
			-55°C to +125°C			80	
		V _{CC} – V _{OH} , I _{SOURCE} = 2 mA	+25°C			110	
			-55°C to +125°C			160	
		V _{OL} – V _{EE} , I _{SINK} = 15 mA	+25°C			500	
			-55°C to +125°C			1000	
		V _{CC} – V _{OH} , I _{SOURCE} = 15 mA	+25°C			1500	
			-55°C to +125°C			1900	-
Operating output current	lout		+25°C	01	15		mA
current			-55°C to +125°C		12		
Capacitive load drive	CL		+25°C	01	350 1	ypical	pF
Power supply.							
Quiescent current			-55°C to +125°C	01		1.6	mA
Power supply rejection	PSRR	+V _S = 5 V to 15 V	+25°C	01	66		dB
ratio			-55°C to +125°C		66		1

TABLE I.	Electrical	performance ch	haracteristics -	Continued.	1/
	LIGOUIIOUI		laraotoriotioo	001101000	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 7

Test	Symbol	Conditions V _S = ±5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified			Min	Max	
DC performance.				· · · · · ·			
Initial offset voltage	VIO		+25°C	01		0.8	mV
			-55°C to +125°C			1.5	
Initial offset voltage drift	ΔVIO		+25°C	01	2 ty	pical	μV/ °C
Input bias current	I _{IB}	$V_{CM} = -5 V \text{ to } 4 V$	+25°C	01		25	pА
			-55°C to +125°C	-		6	nA
Input offset current IIO	lio		+25°C	01		20	pА
			-55°C to +125°C		0.5 typical		nA
Open loop gain AO	AO	V_{OUT} = -4 V to 4 V, R _L = 100 k Ω	+25°C	01	400		V/mV
			-55°C to +125°C	-	400		
		V_{OUT} = -4 V to 4 V, R _L = 10 k Ω	+25°C		80		
			-55°C to +125°C	-	80		
		V_{OUT} = -4 V to 4 V, R _L = 1 k Ω	+25°C		20		
			-55°C to +125°C	-	10		
Noise/harmonic perform	nance.						
Input voltage noise	NV	f = 0.1 Hz to 10 Hz	+25°C	01	2 ty	pical	μVpp
		f = 10 Hz			25 t <u>y</u>	/pical	nV /
		f = 100 Hz			21 t <u>y</u>	/pical	√Hz
		f = 1 kHz			16 t <u>y</u>	/pical	
		f = 10 kHz			13 t <u>y</u>	/pical	
Input current noise	NI	f = 0.1 Hz to 10 Hz	+25°C	01	18 t <u>y</u>	/pical	fApp
		f = 1 kHz			0.8 t	ypical	fA / √Hz
Harmonic distortion		V _{OUT} = ±4.5 V, f = 10 kHz,	+25°C	01	-93 t	ypical	dB
		R _L = 10 kΩ					

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 8

Test	Symbol	Conditions $V_S = \pm 5 V$,	Temperature, T _A		Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified			Min	Max	
Dynamic performance.		·	·				
Unity gain frequency			+25°C	01	1.9 t	ypical	MHz
Full power response		V _{OUT} pp = 9 V	+25°C	01	105 1	ypical	kHz
Slew rate	SR		+25°C	01	3 ty	pical	V/µs
Settling time	ts	To 0.1%, V _{OUT} = 0 V to \pm 4.5 V	+25°C	01	1.4 t	ypical	μS
		To 0.01%, V _{OUT} = 0 V to \pm 4.5 V			1.8 t	ypical	
Matching characteristics		1		I	1		1
Initial offset voltage	VIO		+25°C	01		1.0	mV
			-55°C to +125°C			3	
Initial offset voltage drift	ΔVIO		-55°C to +125°C	01	3 ty	pical	μV/ °C
Input bias current	I _{IB}		+25°C	01		25	pА
Crosstalk	СТ	At f = 1 kHz, R_L = 5 k Ω	+25°C	01	-130	typical	dB
		At f = 100 kHz, $R_L = 5 k\Omega$			-93 t	ypical	
Input characteristics.		1		I	1		1
Input voltage range 2/			-55°C to +125°C	01	-5.2	+4	V
Common mode	CMRR	$V_{CM} = -5 V \text{ to } 2 V$	+25°C	01	66		dB
rejection ratio			-55°C to +125°C	1	66		1
Differential input impedance	Z		+25°C	01	10 ¹³ 0	.5 typical	Ω pF
Common mode input impedance	Z		+25°C	01	10 ¹³ 2	.8 typical	Ω pF

TABLE I.	Electrical	performance	characteristics	- Continued.	1/
		00110111001	011011010100	•••••••	

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 9

Test	Symbol	Conditions V _S = \pm 5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified	'A	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Min	Max	
Output characteristics.	·						
Output saturation <u>3</u> / voltage		V _{OL} – V _{EE} , I _{SINK} = 20 μA	+25°C	01		7	mV
vollage			-55°C to +125°C			10	
		V _{CC} – V _{OH} , I _{SOURCE} = 20 μA	+25°C			14	
			-55°C to +125°C			20	
		V _{OL} – V _{EE} , I _{SINK} = 2 mA	+25°C			55	
			-55°C to +125°C			80	
		V _{CC} – V _{OH} , I _{SOURCE} = 2 mA	+25°C			110	
			-55°C to +125°C			160	
		V _{OL} – V _{EE} , I _{SINK} = 15 mA	+25°C			500	
			-55°C to +125°C			1000	
		V _{CC} – V _{OH} , I _{SOURCE} = 15 mA	+25°C			1500	
			-55°C to +125°C			1900	
Operating output current	Ιουτ		+25°C	01	15		mA
current			-55°C to +125°C		12		
Capacitive load drive	CL		+25°C	01	350	typical	pF
Power supply.		I	-	11			1
Quiescent current			-55°C to +125°C	01		1.6	mA
Power supply rejection	PSRR	$V_{S} = \pm 5 \text{ V to } \pm 15 \text{ V}$	+25°C	01	66		dB
ratio			-55°C to +125°C		66		1

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 10

Test	Symbol	Conditions V _S = ± 15 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified			Min	Max	
DC performance.	·	·					
Initial offset voltage	VIO		+25°C	01		2	mV
			-55°C to +125°C			3	
Initial offset voltage drift	ΔV _{IO}		-55°C to +125°C	01	2 ty	pical	μV/ °C
Input bias current	I _{IB}	V _{CM} = 0 V	+25°C	01		25	pА
		V _{CM} = -10 V			40 t <u>y</u>	ypical	
		V _{CM} = 0 V	-55°C to +125°C	-		6	nA
Input offset current IIO	IIO		+25°C	01		20	pА
			-55°C to +125°C	-	0.5 t	ypical	nA
Open loop gain	AO	V_{OUT} = -10 V to 10 V, R _L = 100 k Ω	+25°C	01	500		V/mV
			-55°C to +125°C		500		
		V_{OUT} = -10 V to 10 V, R _L = 10 k Ω	+25°C		100		
			-55°C to +125°C		100		
		V_{OUT} = -10 V to 10 V, R _L = 1 k Ω	+25°C		30		
			-55°C to +125°C		20		-
Noise/harmonic perform	mance.					1	
Input voltage noise	NV	f = 0.1 Hz to 10 Hz	+25°C	01	2 ty	pical	μVpp
		f = 10 Hz			25 t <u>y</u>	ypical	nV /
		f = 100 Hz			21 t <u>y</u>	ypical	√Hz
		f = 1 kHz	_		16 t <u>y</u>	ypical	_
		f = 10 kHz			13 t <u>y</u>	ypical	
Input current noise	NI	f = 0.1 Hz to 10 Hz	+25°C	01	18 t <u>y</u>	ypical	fApp
		f = 1 kHz			0.8 t	ypical	fA / √Hz

TABLE I. Electrical performance characteristics. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 11

Test Sym		Conditions $V_S = \pm 15 V$,	Temperature, T _A	Device type	Lir	nits	Unit
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified			Min	Max	
Noise/harmonic perform	ance - conti	nued.					
Harmonic distortion		V _{OUT} = ±10 V, f = 10 kHz,	+25°C	01	-85 typical		dB
		$R_L = 10 \ k\Omega$					
Dynamic performance.				I	1		1
Unity gain frequency			+25°C	01	1.9 t	ypical	MHz
Full power response		V _{OUT} pp = 20 V	+25°C	01	45 t <u>y</u>	ypical	kHz
Slew rate	SR		+25°C	01	3 ty	pical	V/µs
Settling time	ts	To 0.1%, V _{OUT} = 0 V to ±10 V +25°C 01		01	4.1 typical		μS
		To 0.01%, V _{OUT} = 0 V to ±10 V			4.5 t	ypical	
Matching characteristics	i.			I	I		1
Initial offset voltage	V _{IO}		+25°C	01		3	mV
			-55°C to +125°C			4	
Initial offset voltage drift	ΔVIO		-55°C to +125°C	01	3		μV/ °C
Input bias current	I _{IB}		+25°C	01		25	pА
Crosstalk	СТ	At f = 1 kHz, R_L = 5 k Ω	+25°C	01	-130	typical	dB
		At f = 100 kHz, $R_L = 5 k\Omega$			-93 t	ypical	
Input characteristics.					I		
Input voltage range 2/			-55°C to +125°C	01	-15.2	+14	V
Common mode	CMRR	V _{CM} = -15 V to +12 V	+25°C	01	70		dB
rejection ratio			-55°C to +125°C	1	70		1
Differential input impedance	Z		+25°C	01	10 ¹³ 0	.5 typical	Ω pF
Common mode input impedance	Z		+25°C	01	10 ¹³ 2	.8 typical	Ω pF

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 12

Test	Symbol	Conditions $V_S = \pm 15 V$,	Temperature, T _A	Device type	Lir	nits	Unit	
		$V_{CM} = 0 V, V_{OUT} = 0 V,$ unless otherwise specified			Min	Max		
Output characteristics.								
Output saturation <u>3</u> / voltage		$V_{OL} - V_{EE}$, I_{SINK} = 20 μ A	+25°C	01		7	mV	
vollago			-55°C to +125°C			10		
		V _{CC} – V _{OH} , I _{SOURCE} = 20 μA	+25°C			14		
			-55°C to +125°C			20		
		V _{OL} – V _{EE} , I _{SINK} = 2 mA	+25°C			55		
			-55°C to +125°C					80
		V _{CC} – V _{OH} , I _{SOURCE} = 2 mA	+25°C			110		
			-55°C to +125°C			160		
		V _{OL} – V _{EE} , I _{SINK} = 15 mA	+25°C			500		
			-55°C to +125°C			1000		
		V _{CC} – V _{OH} , I _{SOURCE} = 15 mA	+25°C			1500		
			-55°C to +125°C			1900		
Operating output current	IOUT		+25°C	01	20		mA	
current			-55°C to +125°C		15			
Capacitive load drive	CL		+25°C	01	350 1	typical	pF	
Power supply.	•	1						
Quiescent current			-55°C to +125°C	01		1.8	mA	
Power supply rejection ratio	PSRR	$V_S = \pm 5 V \text{ to } \pm 15 V$	+25°C	01	70		dB	
Tallo			-55°C to +125°C		70		1	

TABLE I. Electrical performance characteristics - Continued. 1/

<u>1</u>/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ This is a functional specification. Amplifier bandwidth decreases when the input common mode voltage is driven in the range (+V_S - 1 V) to +V_S. Common mode error voltage is typically less than 5 mV with the common mode voltage set at 1 V below the positive supply.

3/ V_{OL} – V_{EE} is defined as the difference between the lowest possible output voltage (V_{OL}) and the negative voltage supply rail (V_{EE}). V_{CC} – V_{OH} is defined as the difference between the highest possible output voltage (V_{OH}) and the positive supply voltage (V_{CC}).

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 13

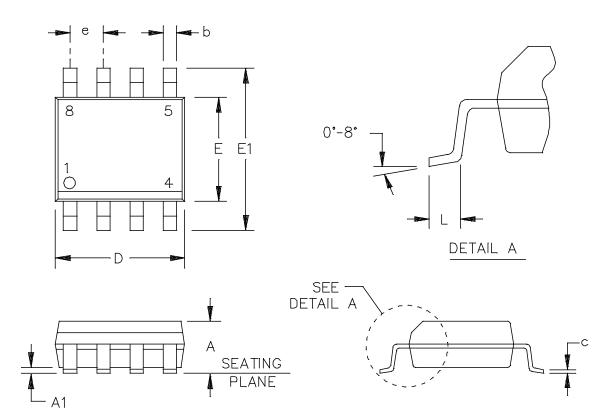


FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 14

Case X

	Dimensions				
Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
А	.053	.068	1.35	1.75	
A1	.003	.009	0.10	0.25	
b	.012	.020	0.31	0.51	
с	.006	.009	0.17	0.25	
D	.188	.196	4.80	5.00	
E	.149	.157	3.80	4.00	
E1	.228	.244	5.80	6.20	
е	.049 BSC		1.27	7 BSC	
L	.015	.049	0.40 1.27		

NOTES:

- Controlling dimensions are inch, millimeter dimensions are given for reference only.
 Falls within reference to JEDEC MS-012-AA.

FIGURE 1. <u>Case outline</u> - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 15

Case X

Device type	01
Case outline	х
Terminal number	Terminal symbol
1	OUTPUT 1
2	-INPUT 1
3	+INPUT 1
4	-Vs
5	+INPUT 2
6	-INPUT 2
7	OUTPUT 2
8	+V _S

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 16

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/12636-01XE	24355	AD822TRZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

Source of supply

24355

Analog Devices Route 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of contact: Raheen Business Park Limerick, Ireland

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12636
		REV	PAGE 17